A uniformly strongly prime radical

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Dual of a Strongly Prime Ideal

Let R be a commutative integral domain with quotient field K and let P be a nonzero strongly prime ideal of R. We give several characterizations of such ideals. It is shown that (P : P) is a valuation domain with the unique maximal ideal P. We also study when P^{&minus1} is a ring. In fact, it is proved that P^{&minus1} = (P : P) if and only if P is not invertible. Furthermore, if P is invertib...

متن کامل

SOME RESULTS ON STRONGLY PRIME SUBMODULES

Let $R$ be a commutative ring with identity and let $M$ be an $R$-module. A proper submodule $P$ of $M$ is called strongly prime submodule if $(P + Rx : M)ysubseteq P$ for $x, yin M$, implies that $xin P$ or $yin P$. In this paper, we study more properties of strongly prime submodules. It is shown that a finitely generated $R$-module $M$ is Artinian if and only if $M$ is Noetherian and every st...

متن کامل

On Properties of Uniformly Strongly Fuzzy Ideals

The main purpose of this paper is to continue the study of uniform strong primeness on fuzzy setting. A pure fuzzy notion of this structure allows us to develop specific fuzzy results on USP (uniformly strongly prime) ideals over commutative and noncommutative rings. Besides, the differences between crisp and fuzzy setting are investigated. For instance, in crisp setting an ideal I of a ring R ...

متن کامل

Prime Radical Theory of Hemirings

Giri and Wazalwar evolved concepts of prime ideal and prime radical in noncommutative semigroups. A hemiring is a ring without subtraction (additive inverse), may not have commutativity and identity. A hemiring with identity is called a semiring. It is well known that a hemiring can be embedded in a semiring. We will use this fact to develop proofs of some results on prime radical in a hemiring...

متن کامل

some results on strongly prime submodules

let $r$ be a commutative ring with identity and let $m$ be an $r$-module. a proper submodule $p$ of $m$ is called strongly prime submodule if $(p + rx : m)ysubseteq p$ for $x, yin m$, implies that $xin p$ or $yin p$. in this paper, we study more properties of strongly prime submodules. it is shown that a finitely generated $r$-module $m$ is artinian if and only if $m$ is noetherian and every st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics

سال: 1987

ISSN: 0263-6115

DOI: 10.1017/s1446788700029013